Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38530158

RESUMO

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Assuntos
Piroptose , Animais , Humanos , Camundongos , Gasderminas , Lipoilação , Proteômica
2.
Methods Mol Biol ; 2696: 199-210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37578724

RESUMO

The Nod-like Receptor (NLR) apoptosis inhibitory proteins (NAIPs) are cytosolic receptors that sense cytosolic bacterial proteins. NAIP ligation induces its association with NLRC4, leading to the assembly of the NAIP/NLRC4 inflammasome, which induces the activation of the caspase-1 protease. Caspase-1 then cleaves pro-interleukin (IL)-1ß, pro-IL-18, and gasdermin D and induces a form of pro-inflammatory cell death, pyroptosis. These processes culminate in host defense against bacterial infection. Here we describe methods for activating NAIP/NLRC4 inflammasome signalling in human and murine macrophages and quantifying inflammasome-induced cell death.


Assuntos
Proteínas de Ligação ao Cálcio , Inflamassomos , Animais , Camundongos , Humanos , Inflamassomos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular , Caspases/metabolismo , Caspase 1/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo
3.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865189

RESUMO

Gasdermin D (GSDMD)-mediated macrophage pyroptosis plays a critical role in inflammation and host defense. Plasma membrane perforation elicited by caspase-cleaved GSDMD N-terminal domain (GSDMD-NT) triggers membrane rupture and subsequent pyroptotic cell death, resulting in release of pro-inflammatory IL-1ß and IL-18. However, the biological processes leading to its membrane translocation and pore formation are not fully understood. Here, using a proteomics approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner and demonstrated that post-translational palmitoylation of GSDMD at Cys191/Cys192 (human/mouse) led to membrane translocation of GSDMD-NT but not full-length GSDMD. GSDMD lipidation, mediated by palmitoyl acyltransferases ZDHHC5/9 and facilitated by LPS-induced reactive oxygen species (ROS), was essential for GSDMD pore-forming activity and pyroptosis. Inhibition of GSDMD palmitoylation with palmitate analog 2-bromopalmitate or a cell permeable GSDMD-specific competing peptide suppressed pyroptosis and IL-1ß release in macrophages, mitigated organ damage, and extended the survival of septic mice. Collectively, we establish GSDMD-NT palmitoylation as a key regulatory mechanism controlling GSDMD membrane localization and activation, providing a novel target for modulating immune activity in infectious and inflammatory diseases. One Sentence Summary: LPS-induced palmitoylation at Cys191/Cys192 is required for GSDMD membrane translocation and its pore-forming activity in macrophages.

4.
Front Immunol ; 13: 875991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464448

RESUMO

The MRP8-Cre-ires/EGFP transgenic mouse (Mrp8creTg, on C57BL/6J genetic background) is popular in immunological and hematological research for specifically expressing Cre recombinase and an EGFP reporter in neutrophils. It is often crossed with other transgenic lines carrying loxP-flanked genes to achieve restricted gene knockout in neutrophils. However, due to the way in which the line was created, basic knowledge about the MRP8-Cre-ires/EGFP transgene in the host genome, such as its integration site(s) and flanking sequences, remains largely unknown, hampering robust experimental design and data interpretation. Here we used a recently developed technique, targeted locus amplification (TLA) sequencing, to fill these knowledge gaps. We found that the MRP8-Cre-ires/EGFP transgene was integrated into chromosome 5 (5qG2) of the host mouse genome. This integration led to a 44 kb deletion of the host genomic sequence, resulting in complete deletion of Serpine1 and partial deletion of Ap1s1. Having determined the flanking sequences of the transgene, we designed a new genotyping protocol that can distinguish homozygous, heterozygous, and wildtype Mrp8creTg mice. To our surprise, crossing heterozygous mice produced no homozygous Mrp8creTg mice, most likely due to prenatal lethality resulting from disrupted Ap1s1 gene expression.


Assuntos
Integrases , Sítios Internos de Entrada Ribossomal , Animais , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transgenes
5.
Nat Commun ; 12(1): 6699, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795266

RESUMO

Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1ß production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Inflamassomos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Macrófagos/imunologia , Proteínas de Ligação a Fosfato/imunologia , Animais , Candida albicans/fisiologia , Candidíase/genética , Candidíase/microbiologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estimativa de Kaplan-Meier , Rim/imunologia , Rim/metabolismo , Rim/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
6.
Nat Immunol ; 21(9): 1119-1133, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719519

RESUMO

The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here, we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transitions between subpopulations and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers and therapeutic targets at single-cell resolution.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Neutrófilos/fisiologia , Peritonite/imunologia , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Homeostase , Humanos , Camundongos , Análise de Sequência de RNA
7.
Curr Opin Hematol ; 26(1): 28-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407218

RESUMO

PURPOSE OF REVIEW: CXCR2 is key stimulant of immune cell migration and recruitment, especially of neutrophils. Alleviating excessive neutrophil accumulation and infiltration could prevent prolonged tissue damage in inflammatory disorders. This review focuses on recent advances in our understanding of the role of CXCR2 in regulating neutrophil migration and the use of CXCR2 antagonists for therapeutic benefit in inflammatory disorders. RECENT FINDINGS: Recent studies have provided new insights into how CXCR2 signaling regulates hematopoietic cell mobilization and function in both health and disease. We also summarize several CXCR2 regulatory mechanisms during infection and inflammation such as via Wip1, T-bet, P-selectin glycoprotein ligand-1, granulocyte-colony-stimulating factor, and microbiome. Moreover, we provide an update of studies investigating CXCR2 blockade in the laboratory and in clinical trials. SUMMARY: Neutrophil homeostasis, migration, and recruitment must be precisely regulated. The CXCR2 signaling pathway is a potential target for modifying neutrophil dynamics in inflammatory disorders. We discuss the recent clinical use of CXCR2 antagonists for controlling inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Movimento Celular/efeitos dos fármacos , Microbiota/imunologia , Neutrófilos/imunologia , Receptores de Interleucina-8B , Animais , Movimento Celular/imunologia , Fator Estimulador de Colônias de Granulócitos/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Glicoproteínas de Membrana/imunologia , Neutrófilos/patologia , Proteína Fosfatase 2C/imunologia , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/imunologia , Proteínas com Domínio T/imunologia
8.
Stem Cell Reports ; 11(5): 1092-1105, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392974

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) undergo self-renewal and differentiation to guarantee a constant supply of short-lived blood cells. Both intrinsic and extrinsic factors determine HSPC fate, but the underlying mechanisms remain elusive. Here, we report that Proteinase 3 (PR3), a serine protease mainly confined to granulocytes, is also expressed in HSPCs. PR3 deficiency intrinsically suppressed cleavage and activation of caspase-3, leading to expansion of the bone marrow (BM) HSPC population due to decreased apoptosis. PR3-deficient HSPCs outcompete the long-term reconstitution potential of wild-type counterparts. Collectively, our results establish PR3 as a physiological regulator of HSPC numbers. PR3 inhibition is a potential therapeutic target to accelerate and increase the efficiency of BM reconstitution during transplantation.


Assuntos
Medula Óssea/enzimologia , Células-Tronco Hematopoéticas/enzimologia , Serina Endopeptidases/metabolismo , Animais , Apoptose , Medula Óssea/efeitos da radiação , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Serina Endopeptidases/deficiência
9.
PLoS Pathog ; 14(7): e1007076, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059535

RESUMO

Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells' oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells' hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress.


Assuntos
Candida albicans/patogenicidade , Candidíase/metabolismo , Estresse Oxidativo/fisiologia , Simportadores de Próton-Fosfato/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Transporte Biológico/fisiologia , Drosophila , Proteínas Fúngicas/metabolismo , Humanos , Camundongos , Fosfatos/metabolismo , Transdução de Sinais/fisiologia , Virulência
10.
J Exp Med ; 215(6): 1519-1529, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29793924

RESUMO

Pyroptosis is an inflammasome-induced lytic cell death mode, the physiological role of which in chronic inflammatory diseases is unknown. Familial Mediterranean Fever (FMF) is the most common monogenic autoinflammatory disease worldwide, affecting an estimated 150,000 patients. The disease is caused by missense mutations in Mefv that activate the Pyrin inflammasome, but the pathophysiologic mechanisms driving autoinflammation in FMF are incompletely understood. Here, we show that Clostridium difficile infection of FMF knock-in macrophages that express a chimeric FMF-associated MefvV726A Pyrin elicited pyroptosis and gasdermin D (GSDMD)-mediated interleukin (IL)-1ß secretion. Importantly, in vivo GSDMD deletion abolished spontaneous autoinflammatory disease. GSDMD-deficient FMF knock-in mice were fully protected from the runted growth, anemia, systemic inflammatory cytokine production, neutrophilia, and tissue damage that characterize this autoinflammatory disease model. Overall, this work identifies pyroptosis as a critical mechanism of IL-1ß-dependent autoinflammation in FMF and highlights GSDMD inhibition as a potential antiinflammatory strategy in inflammasome-driven diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Febre Familiar do Mediterrâneo/metabolismo , Febre Familiar do Mediterrâneo/patologia , Inflamação/metabolismo , Inflamação/patologia , Animais , Clostridioides difficile/fisiologia , Citocinas/biossíntese , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Neutrófilos/patologia , Proteínas de Ligação a Fosfato , Pirina/metabolismo , Pirina/farmacologia , Piroptose , Baço/patologia , Síndrome de Emaciação/patologia
11.
Cell Rep ; 22(11): 2924-2936, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539421

RESUMO

Gasdermin D (GSDMD) is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT) to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE), released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT) that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Proteínas Reguladoras de Apoptose/uso terapêutico , Morte Celular/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas de Ligação a Fosfato
12.
Cell Rep ; 20(1): 224-235, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683316

RESUMO

Reactive oxygen species (ROS)-induced cysteine S-glutathionylation is an important posttranslational modification (PTM) that controls a wide range of intracellular protein activities. However, whether physiological ROS can modulate the function of extracellular components via S-glutathionylation is unknown. Using a screening approach, we identified ROS-mediated cysteine S-glutathionylation on several extracellular cytokines. Glutathionylation of the highly conserved Cys-188 in IL-1ß positively regulates its bioactivity by preventing its ROS-induced irreversible oxidation, including sulfinic acid and sulfonic acid formation. We show this mechanism protects IL-1ß from deactivation by ROS in an in vivo system of irradiation-induced bone marrow (BM) injury. Glutaredoxin 1 (Grx1), an enzyme that catalyzes deglutathionylation, was present and active in the extracellular space in serum and the BM, physiologically regulating IL-1ß glutathionylation and bioactivity. Collectively, we identify cysteine S-glutathionylation as a cytokine regulatory mechanism that could be a therapeutic target in the treatment of various infectious and inflammatory diseases.


Assuntos
Glutationa/metabolismo , Interleucina-1beta/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Motivos de Aminoácidos , Animais , Células da Medula Óssea/metabolismo , Cisteína/metabolismo , Glutarredoxinas/metabolismo , Interleucina-1beta/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
J Immunol ; 198(7): 2854-2864, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235862

RESUMO

Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation.


Assuntos
Células Precursoras de Granulócitos/metabolismo , Granulócitos/metabolismo , Hematopoese/imunologia , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Diferenciação Celular/imunologia , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Granulócitos/citologia , Hematopoese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Células Mieloides/citologia , Células Mieloides/metabolismo , Nicho de Células-Tronco/fisiologia
15.
Nucleic Acids Res ; 42(16): 10668-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25122750

RESUMO

Long non-coding RNAs (lncRNAs) play critical roles in diverse cellular processes; however, their involvement in many critical aspects of the immune response including the interferon (IFN) response remains poorly understood. To address this gap, we compared the global gene expression pattern of primary human hepatocytes before and at three time points after treatment with IFN-α. Among ∼ 200 IFN-induced lncRNAs, one transcript showed ∼ 100-fold induction. This RNA, which we named lncRNA-CMPK2, was a spliced, polyadenylated nuclear transcript that was induced by IFN in diverse cell types from human and mouse. Similar to protein-coding IFN-stimulated genes (ISGs), its induction was dependent on JAK-STAT signaling. Intriguingly, knockdown of lncRNA-CMPK2 resulted in a marked reduction in HCV replication in IFN-stimulated hepatocytes, suggesting that it could affect the antiviral role of IFN. We could show that lncRNA-CMPK2 knockdown resulted in upregulation of several protein-coding antiviral ISGs. The observed upregulation was caused by an increase in both basal and IFN-stimulated transcription, consistent with loss of transcriptional inhibition in knockdown cells. These results indicate that the IFN response involves a lncRNA-mediated negative regulatory mechanism. lncRNA-CMPK2 was strongly upregulated in a subset of HCV-infected human livers, suggesting a role in modulation of the IFN response in vivo.


Assuntos
Interferon-alfa/farmacologia , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Hepatite C/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Interferon gama/farmacologia , Janus Quinases/metabolismo , Fígado/metabolismo , Camundongos , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Fatores de Transcrição STAT/metabolismo , Regulação para Cima
16.
Front Immunol ; 5: 676, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25688240

RESUMO

Recent genome-wide studies have revealed the presence of thousands of long non-protein-coding RNAs (lncRNAs), some of which may play critical roles in the cell. We have previously shown that a large number of lncRNAs show differential expression in response to interferon (IFN)α stimulation in primary human cells. Here, we show that a subset of IFN-induced lncRNAs are positioned in proximity of protein-coding IFN-stimulated genes (ISGs). The majority of gene pairs originated from bidirectional promoters and showed positively correlated expression. We focused our analysis on a pair consisting of the known protein-coding ISG, BST2, and an un-studied putative lncRNA originating from the promoter region of BST2 in a divergent orientation. We showed that this transcript was a multi-exonic, polyadenylated long RNA that lacked protein-coding capacity. BST2 and the lncRNA were both induced in response to IFNα in diverse cell types. The induction of both genes was mediated through the JAK-STAT pathway, suggesting that IFN-stimulated response elements within the shared promoter activated the transcription of both genes. RNAi-mediated knock-down of the lncRNA resulted in down-regulation of BST2, and we could show that this down-regulation occurred at the level of transcription. Forced overexpression of this lncRNA, which we named BST2 IFN-Stimulated Positive Regulator (BISPR), resulted in up-regulation of BST2, indicating that the regulation of expression of BST2 by BISPR is mediated through interactions involving BISPR RNA itself, rather than the impact of its transcription from an adjacent locus. Importantly, upon IFN stimulation, transcriptional activation of BISPR preceded the induction of BST2, suggesting that expression of BISPR facilitated the initiation of transcription in its paired protein-coding gene. The lncRNA-mediated transcriptional regulation described in this study may help govern the expression of additional protein-coding RNAs involved in IFN response and other cellular processes.

17.
J Proteome Res ; 12(6): 2537-51, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23682656

RESUMO

Hepatitis C virus (HCV) is a major cause of chronic liver disease. HCV NS5A protein plays an important role in HCV infection through its interactions with other HCV proteins and host factors. In an attempt to further our understanding of the biological context of protein interactions between NS5A and host factors in HCV pathogenesis, we generated an extensive physical interaction map between NS5A and cellular factors. By combining a yeast two-hybrid assay with comprehensive literature mining, we built the NS5A interactome composed of 132 human proteins that interact with NS5A. These interactions were integrated into a high-confidence human protein interactome (HPI) with the help of the TargetMine data warehouse system to infer an overall protein interaction map linking NS5A with the components of the host cellular networks. The NS5A-host interactions that were integrated with the HPI were shown to participate in compact and well-connected cellular networks. Functional analysis of the NS5A "infection" network using TargetMine highlighted cellular pathways associated with immune system, cellular signaling, cell adhesion, cellular growth and death among others, which were significantly targeted by NS5A-host interactions. In addition, cellular assays with in vitro HCV cell culture systems identified two ER-localized host proteins RTN1 and RTN3 as novel regulators of HCV propagation. Our analysis builds upon the present understanding of the role of NS5A protein in HCV pathogenesis and provides potential targets for more effective anti-HCV therapeutic intervention.


Assuntos
Proteínas de Transporte/genética , Hepacivirus/imunologia , Hepatite C Crônica/genética , Interações Hospedeiro-Patógeno , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Mapas de Interação de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas de Transporte/imunologia , Adesão Celular , Linhagem Celular , Mineração de Dados , Expressão Gênica , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/imunologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/imunologia
18.
J Virol ; 87(1): 489-502, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097442

RESUMO

Stress granules (SGs) are cytoplasmic foci composed of stalled translation preinitiation complexes induced by environmental stress stimuli, including viral infection. Since viral propagation completely depends on the host translational machinery, many viruses have evolved to circumvent the induction of SGs or co-opt SG components. In this study, we found that expression of Japanese encephalitis virus (JEV) core protein inhibits SG formation. Caprin-1 was identified as a binding partner of the core protein by an affinity capture mass spectrometry analysis. Alanine scanning mutagenesis revealed that Lys(97) and Arg(98) in the α-helix of the JEV core protein play a crucial role in the interaction with Caprin-1. In cells infected with a mutant JEV in which Lys(97) and Arg(98) were replaced with alanines in the core protein, the inhibition of SG formation was abrogated, and viral propagation was impaired. Furthermore, the mutant JEV exhibited attenuated virulence in mice. These results suggest that the JEV core protein circumvents translational shutoff by inhibiting SG formation through an interaction with Caprin-1 and facilitates viral propagation in vitro and in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas do Core Viral/metabolismo , Replicação Viral , Substituição de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Análise Mutacional de DNA , Humanos , Espectrometria de Massas , Camundongos , Proteínas Mutantes/metabolismo , Ligação Proteica , Virulência
19.
J Proteome Res ; 11(7): 3664-79, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22646850

RESUMO

Hepatitis C virus (HCV) causes chronic liver disease worldwide. HCV Core protein (Core) forms the viral capsid and is crucial for HCV pathogenesis and HCV-induced hepatocellular carcinoma, through its interaction with the host factor proteasome activator PA28γ. Here, using BD-PowerBlot high-throughput Western array, we attempt to further investigate HCV pathogenesis by comparing the protein levels in liver samples from Core-transgenic mice with or without the knockout of PA28γ expression (abbreviated PA28γ(-/-)CoreTG and CoreTG, respectively) against the wild-type (WT). The differentially expressed proteins integrated into the human interactome were shown to participate in compact and well-connected cellular networks. Functional analysis of the interaction networks using a newly developed data warehouse system highlighted cellular pathways associated with vesicular transport, immune system, cellular adhesion, and cell growth and death among others that were prominently influenced by Core and PA28γ in HCV infection. Follow-up assays with in vitro HCV cell culture systems validated VTI1A, a vesicular transport associated factor, which was upregulated in CoreTG but not in PA28γ(-/-)CoreTG, as a novel regulator of HCV release but not replication. Our analysis provided novel insights into the Core-PA28γ interplay in HCV pathogenesis and identified potential targets for better anti-HCV therapy and potentially novel biomarkers of HCV infection.


Assuntos
Autoantígenos/genética , Hepacivirus/fisiologia , Hepatite C/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas do Core Viral/biossíntese , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Morte Celular/genética , Linhagem Celular , Técnicas de Inativação de Genes , Hepacivirus/imunologia , Hepatite C/imunologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma/deficiência , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes/biossíntese , Vesículas Transportadoras/metabolismo , Liberação de Vírus , Replicação Viral
20.
J Virol ; 86(15): 7918-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593164

RESUMO

Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkin's lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly.


Assuntos
Regulação da Expressão Gênica , Hepacivirus/fisiologia , Hepatite C/metabolismo , MicroRNAs/biossíntese , Montagem de Vírus/fisiologia , Genoma Viral/fisiologia , Células HEK293 , Células Hep G2 , Hepatite C/genética , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Fígado/metabolismo , Fígado/virologia , MicroRNAs/genética , Mutação , Especificidade de Órgãos/genética , RNA Viral/genética , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...